Sabtu, Agustus 16, 2014

Rumus Integral Kalkulus II



RUMUS-RUMUS INTEGRAL KALKULUS II
1.1 Definisi Integral Tak Tentu (Indefinite Integral)
Jika https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjugsp25MMVUAlt025XqUjW7th76Ukltg-8QA4oCPJFEq6BsSBVLnmxg8MUkjv4pm4PXMpocrDXb2bS64ztTaK1NwWQmHmXjCPdUy5LlEZZo3b-_kr4o0Na8_31uxV22cI1czXmFL7Lrqdf/s320/1.PNG maka y adalah fungsi yang mempunyai turunan f(x)dan disebut anti turunan
(antiderivate) dari f(x) atau integral tak tentu dari f(x)yang diberi notasi https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi8Bj3rOprRT_FzZxVRqImMs4jmp15NZp2kTb-gNspPNMBbM2Xfu73QBWyYdyYssnb709uoOGtKplCEk6d4UbX02A5Tj0uCOT5TpMaGGdNvFspU40aYYy6gefLE61-zWJ5nSefV1PFUbB6B/s320/2.PNG . Sebaliknya, jika
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjBmJrCMTkfGYzoyfNGLVQvG0YTrKVptA5KD-Ymt5a8TDcj_Q5cfXnsw-XRBHYTJpd5_7g8tdGf-hpGmdyungsBKMqkBlARaB7sxR5fLo3HC9tf1Z42tKSHArwPILlpdCxVSZnfpSk79des/s320/3.PNG karena turunan dari suatu konstanta adalah nol, maka suatu integral tak tentu 
mempunyai suku konstanta sembarang.

1.2 Rumus-rumus Integral Tak Tentu
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh8tVRYT1a-u-8CdanrTaCFCIuFTjlANlGcYTKdqfj3s4uDks7uUf98p8WWOKSt8cCkhPpIXZR-BcXOL3z2AgKBf9fWUTQ1a3V8zgsdldSA3LtIMlOkUEVlaQTGE80qhbsyPfNovan4Tjjh/s320/5.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjVCoqKZmXekmBJn3-Z0sM9E4p6BIhOGPq9gND-jpPeyA1v59Bc-6Gz1ugXnF2_JQvLX3BvG77I6cGuja2QQAJxn6aQGko9TTHnYP0VAFBiGlkWarUXvHsNwIUtlEPwR4UbjLbVgMNay_Ks/s320/6PNG.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj8ApH3fT1_c5H4LSJVUygrKjrGrOPTsDQciLI-Gja-said9f804lO2KM8LY3ZZ1L2rK9giGoFkvkGqW8DgclsdICaW4DJQc0-j0MfTA_jVjh4xmqkXOOH8Rk4sW29dynCgOt-keCu0Jy3A/s320/7.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjZ9hyphenhyphenImWiiEC4tPer41aJtQm4AZjhQiOyc1nT6fawiRqMJ8XVcNSRp9VVL1onw0QKyLewb5PNWzgXoYGyq8T3zPBO8enB9LSUJUV2pEkkD3g3kdsXxYambYm9kF7XCzs0Vi3Vjk_vztQTs/s320/8.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhMxODw15zk8oAQ6uBQU7__gyuJ3tkOutubTCxOWv_wxWRal_QtFO8T5wZ9FJpWpIaq7AC3MPBJFfsTn8LQhfE-Z8UVpdemSuRwgmsIfKjGXacBxJuguJlj-w-tgx1-PPjGnRrMucd_GEFn/s320/9.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhMrWSrdVRzBjx-4FxHceyFjFfbCNyQT6pgI0XA6Cxdn_IuGcBq1sK5M4IjmGialGocGrDOyVkdi1HBT5-rlNkoliwSKEuix6YlZkj367HV3Axg-A5asE3ryM20y09Sxd8oNq7cjylxJdi9/s320/10.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjPp8k21taIVwnYj5UoGNdJtZicOixJcQYzHJug6lVQ5nKk4H1hI7vjtJRxPbgKOiMI5mQy-AMddVqjWCyR4ORFkxVZZOg-q0zIlxwINtBHnjwxOoU15GwfqbXwuHPvpEizSgtL3r6z4qx3/s320/11.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh8EwfzlaHG3E7AQIVR-NsldC3wqnJZr8ZJ6hGwzFO4wgfD6JM5vZPZD7_WHCfXF9bt8cYJcNduzNhFrwhpG6OOCBngn6spt_pD4Zs2mg07J-woxnVprjFnFcwgarIh4UpA05S-9HyaJnuk/s320/12.PNG

1.3 Definisi Integral Tentu
Andaikan f(x) didefinisikan dalam selang https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjDqVverevU10ye8TfOzcmxQv_H6bynvmh-nk8FsvlyxTWww7BXC1UPhSDiPitt06pfmAjSLOEx5Pi7jCtamksKOZTTxRmr7Zi9_ZMBSQLeQFblqsgqTbsgukSx-ftGyf-cbGwZcJGahaDf/s320/13.PNG Selang ini dibagi menjadi n bagian yang sama 

panjang, yaitu https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhhjbDReH2i2DmL8rT2fSHnXf56zCNZQWge21tfOEkaW2gerhPHHh45W0mq9okmFYs8jz7-JU6Cy_4JeDrotBchNXlkhpEp2AoMdv0YYMqB4qQ3hpNt-G64jR0YWfmUX4F__au9BsipfFO0/s320/14.PNGMaka integral tentu dari f(x) antara x = a dan x =b didefinisikan 
sebagai berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhYg6CVnWKfrE8jOtDpKIK3rDhkkxE22kjTLFyCiPVIKEtnVw9S6AF9jxuDv1YqEGqp5fvs0EOQzQIA2WcDtkCJXAIQYNK9yF5y1TX8MqNaI32yRI5o45qfwo92ObZBTpvbAFdbRSZBy86r/s320/15.PNG
Limit ini pasti ada jika f(x) kontinu sepotong demi sepotong jikahttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhfSrpCRsMbQsWutZKD5LZeY5SRbhU0KleBq9EaLf_LF-wPqpeVps6dH9t3g5QUSzBJMXnHFB1QiDjDi8YucQqpt155yF_IlZJABpdPG_w45SYhIjW6lH0JRiv8RwAJynZKWOKOKtMHM2_z/s320/16.PNG
maka menurut dalil pokok dari kalkulus integral, integral tentu diatas dapat dihitung dengan 
rumus :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjFE_cfimRa0xImzYl7i3ZJp5bvBezBsvYpe71XW6XkjEXW4zWgoUbH7Ys0MjBQnDysdIb0CcVvtBvpd2ucGQEo8ZwJYmQ8BTpzHLVwFWfGzpK1dlcANO440eWtoUgCZka-IfX0Le-TkRex/s320/17PNG.PNG

1.4 Rumus-rumus Integral tentu
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj2PchRD-nMx2OsBOVqouNOwdpz9ZHgk6VGu2_yCA7SS1gQKrv-lkmpQiB34MRyg2iSHLwGF7cdNIgE8BNciCO2LWZMsy1uj4vmNaxARkeYlbyydXIuuf0MANqI13Db3m4u8Ua7j42a8qpq/s320/18PNG.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEghYRGBIOKtRoHrI-76ikMf6SR1GdOyvVJzTr1aWbZd3vHxc06sD-OjAHXPg5c5xt-iWTw8tyfk3SXRhEyjpa_BDfuZWuXLgmAPxCC7xE88NfmLYMAFTI_0oKg8xo7zMZrqp7X79N8QtBwY/s320/aPNG.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiE5265E3vM6b2JgtZvzQA_RK5SVzJ97aaz_PUvy82SKCIiH_HXnuhnhAzsDFOzxYZa6-NCe8j9cxkDS5hJxHzaH59J58gAtgvNw2qYTYpZVVkLJEnycTuqHpKohKdS2Zu2zvsIBauhOPqj/s320/b.PNG
dengan k sebagai konstanta sembarang.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiXPhQQkb0O2vMa7y5HW8UMgF6mqeVcUSQFhsPrGBEBatFSwx2zIY8I1iJCKFaIvDGRQFGfI3j0wdISeqgR1-YEDUdNdkDJwM0OP4UWNWoERW0wDnAvcrAY2KTr2TeKpkD_anMKmJOLfB1j/s320/20.PNG


1.5 Integral Parsial
Prinsip dasar integral parsial :
  1. Salah satunya dimisalkan U
  2. Sisinya yang lain (termasuk dx) dianggap sebagai dv

Sehingga bentuk integral parsial adalah sebagai berikut : 
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgZm6ZOv3JrYPyypOk4JTmG1wDKsprUeGd3u1CkVWpk-WJOWFK2bL_jfFNlIb7WxziHbJiz5YqThZq-e7DoBiXARKsHC178vG2u0os2gnZvOU_gcEkbjbMu6CKjxfBZFjb_8KkzQLYdQZqN/s320/21.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhWa_eEdnSAY1CeTzd05pNsxolrLWiDMB35YrjabzCALOEi031vPZ8ZAfzgFgEt9_Z8mlBcTXhl9mJ9cEx7sbntCBBAZRtW3WezxHaGBBq6hdvJ0Rl-PgGd9RULGWbLUMGfv5qs6d2xrI1B/s320/22.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiHCtbNhNGTvemmyxdnmTYwOuoSG6RYsSpzi5PQ9RBi3dOyN53P4TSmHhtw68d0Fs3IpWEU36QpfxNn9T52UIm6sP9e8KHLUbpBiMMORiO4d-hx2fVY79uSXKsQRLAhN0UA9P-WjOJI_jEU/s320/23.PNG



1.1 Beberapa Aplikasi dari Integral
a. Perhitungan Luas suatu kurva terhadap sumbu x

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj6OBbPzJSTEHwbrXNrQGxtjYpmV4VkFsxVk8dXWvwaPfx8W6c39o4TFgpS_ogmc0vlp_TFiOKDv4NfAoBBUcArHu1LfAro0jvOkCeffYezVewoNNcgr4Yt6bHjU_kB_ZypNbgG_wLhyphenhyphen9YA/s320/24PNG.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgILLUPiPp71DIJjufUvJ_Eom6jJLJZhPSWNRdWCoFOZOBwa8NQU5HJ_heas3dDqEq22NuUYXLIE9Lt9UaZljGzGwNDbvnoVmM07dV5a9s5EO8eV_NCgZbXHTuElJ5IKoiEApjfy0mhH8oY/s320/25.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEilpMn1L9P0CNLuCiRktSyY_NHUtUNPpWzeILvpLdMwdAFwe5CsEUxVBwxknn-1tpBoihzeAG_WQ0w1kDPT-burs1MA697L9lyRlr5-WRiGPgjbf4UR8aTLapYueLcwjDp1XDUqzgzDQ3h9/s320/26.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjrXLaivtMTQhdAVajM3vD6DyWYBmQy6QiLWFXIMc8ElB_0CMrb56Axpfm7BE-M5mbA9M-jtD1IfFI7kKewncuWMu4jzqUiRwonY1lGD4JI9UUuaHbAmQDIpld3wgiOkpRTceoIhX_NXN8A/s320/27.PNG
b. Menghitung luas diantara dua buah kurva
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEho_FYj8hS49GfyYU2-zENW1zMX09Zo-kgyVzqTN-Ijas8Kah-OKMKA-WBJ7BX1lA8IrRx3IYV2i-90t4IDEdMAFjWssmrpTBVXsg7KSOY2aLkQWZnhOB2LZ8rLdQgXWXOjZbDjE5uibPrc/s320/28.PNG
c. Menghitung volume benda putar yang diputar terhadap sumbu koordinat
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgocMeyqWE1-XFR2wLIzix0EnSUtGo_fgjhkszMEo7W0t-ThjpChJbayEwVcNQLaKq6GaDifWaRbwij3677m3wTCAjrEPNrPMPS4PQVThoM5ZOSP5IJ8RU2KEFfJZE3kGXipWYSe4K9PzE3/s320/29PNG.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg9p9VeEcEe0RtQpuiF8SXUq63tIvQgyz61xuphNTPqUBWg6apiLtS2WoXuJeatW5wVdqDE9r43ss8JleFLtxbuGxhUcRCdE7-AeiK-Pir_VhlIV6PMzq9C4-Z4mFXoUbwp3gJt9MSoM9Tl/s320/30.PNG
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjzE_DxqCPDQcK2gjiVVf4Woy3uF_RMrKEuwT3IJcmdSjdJcxzsJlUpzx3djZ2XHysEpz6hYUBpLiOrVqjLwIOFVtIVRlShYiqrHfiR_AZYDQ1CqNdV7jOZzFntzqYZwZd4kjG_RvqL5-q1/s320/31.PNG


Nama           = Dewi Ratnasari
Jurusan        = Sistem Informasi
Tugas                    = Kalkulus II

Tidak ada komentar:

Posting Komentar